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We consider two mutually coupled oscillators, where we have independent control over the magnitude, sign,
and delay of the coupling signal. For appropriate tuning of the coupling constants, there is a coupling-induced
resonance where the amplitude becomes large. We investigate the role of nonlinear dissipation and amplitude-
dependent frequency correction on the coupling resonance. With delayed coupling, we track the deformation of
the resonant bifurcation equation through imperfect bifurcations and the generation of isolas, which generate
intervals of multistability between oscillations of different amplitudes. The resonance should be observable in
coupled-oscillator systems, where the amplitude remains an important dynamical variable, but not in limit-
cycle oscillators modeled by phase-only descriptions.
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I. INTRODUCTION

In recent theoretical work on two mutually coupled lasers
�1�, we reported on the existence of an amplitude resonance
that occurs for weak coupling. That is, the coupling constants
may be tuned such that the amplitude of periodic oscilla-
tions, generated via a Hopf bifurcation, becomes large; for
values of the coupling tuned away from the resonance, the
amplitude of the periodic oscillations is small. In �2� we
found that this resonance phenomenon also exists for two
coupled lasers with delay and possesses parameter regions
where there is bistability. In the present paper we address
two unresolved issues from our earlier work. First, in �1� our
analysis could identify the coupling values when the ampli-
tude resonance occurred, but the bifurcation equation was
singular in that it predicted unbounded amplitudes; here, we
show that the amplitude-dependent phase is the source of the
resonance, while higher-order nonlinear dissipation is suffi-
cient to remove the singularity that appears in the leading-
order result. Second, in �2� we did not track the continuous
deformation of the bifurcation curves as the parameters were
varied; in this paper, we track disconnected branches of so-
lutions and find imperfect bifurcations and isolas of the pe-
riodic oscillations. While our investigations were originally
motivated by the dynamics of lasers, and we will again use
the laser model as a convenient starting point, the results
follow from quite generic normal-form-type equations for
coupled oscillators. Thus, we would expect the resonance
effect to be observable in coupled oscillators that occur in
biology, chemistry, mechanics, and electronics �see �9,10� for
reviews and extensive bibliographies�.

We consider the following nondimensional equations for
two mutually coupled identical lasers �1�:

dy1

dt
= x1�1 + y1� ,

dx1

dt
= − y1 − �x1�a1 + by1� + �d2y2,

dy2

dt
= x2�1 + y2� ,

dx2

dt
= − y2 − �x2�a2 + by2� + �d1y1, �1�

where xj and yj represent deviations from the nonzero steady
state of the inversion and intensity of laser j, respectively.
��1 is the ratio of the inversion decay time to the intensity-
decay time, and aj and b are nondimensional constants that
take into account both energy-removing dissipation and the
energy-supplying pump. The �dk represent the coupling
strength of laser k to laser j. If there is a significant time
delay in the coupling path, then the coupling term in the
equations for the inversion becomes

dxj

dt
� + �dkyk�t − �� , �2�

where � is the time delay. The derivation of the nondimen-
sional model and the precise definition of all of the param-
eters and constants can be found in our earlier works �1,2�.
We reiterate that the resonance phenomenon that we will
describe can be considered generic to two mutually coupled
oscillators such that Eqs. �1� serve as simply an example.

Of particular importance to our work is that we allow for
independent control of the coupling constants dj, and more-
over, for Eqs. �1� �without delay� we allowed one of the dj to
be negative; specifically, we fix d1�0 and allow d2�0 to be
the variable control parameter. We find that when d2=d2H
�−�a1a2� /d1, there is Hopf bifurcation to oscillatory solu-
tions. Then as �d2� is increased further, there is a singular
point d2=d2S�−�a1d1� /a2 in the leading-order bifurcation
equation such that as d2→d2S, the amplitude of the periodic
solutions becomes large. This is shown in Fig. 1�a�, where
the ��� are numerical results and the solid curve is the
leading-order bifurcation equation, Eq. �4�, which we will
describe in the next section; the latter has a pole-type singu-
larity at d2=d2S. We also show in the inset figures that at the
peak of resonance the oscillations are pulsating �in y� and
large amplitude, while away from the resonance the oscilla-
tions are small and nearly harmonic. One physical interpre-*FAX: 214-768-2355. tcarr@smu.edu
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tation for the source of the resonance is that the coupling
term provides an effective negative damping that cancels
with the lasers self-damping, which allows the amplitude to
become large; this is suggested by the singularity condition
where �d2� /d1=a1 /a2. In this paper we will show that the
resonance also corresponds to matching the nonlinear-
amplitude corrections between the slowly evolving phases of
each oscillator, which, in essence, corresponds to frequency
matching between the oscillators. We then show that by de-
riving the higher-order nonlinear dissipation terms of the rel-
evant normal-form or averaged equations, the singularity in
the bifurcation equation is removed.

The resonance effect continues to be exhibited when cou-
pling terms in Eqs. �1� are modified to include the delay term
of Eq. �2�. However, in the presence of delay, the bifurcation
curve of periodic solutions folds to form intervals in d2 of
bistability, which can be seen in Fig. 2 �see also Fig. 7 of
�2��. More generally, multistability of periodic oscillations is
a generic feature of systems with delay and has been ex-
plored quite extensively in lasers with delay �3–5�. Multista-
bility turns out to be the origin of what we referred to as
“discontinuous unfolding” of the bifurcation curve in �2�;
there, we found that a small change in the parameter leads to
a dramatic change in the bifurcation diagram �see Fig. 7c of
�2��. In hindsight, the origin of this distinct qualitative
change is obvious; namely, there is a critical value of the
coupling such that there is an “imperfect bifurcation” �6,7�
and branch “pinch-off” between coexisting branches of solu-
tions. A related phenomenon is the generation of “isolas”
�6,8� or isolated branches of solutions that are generated by
varying the delay. The second main topic of this paper is to
describe the interaction of the coexisting solution branches
that lead to the imperfect bifurcations and the isolas.

It is often the case that the main point of interest in the
study of coupled oscillators is their degree of synchroniza-
tion, which implies a focus on the phase- and frequency-
locking characteristics of the oscillators. Thus, many inves-
tigations focus on coupled-phase oscillators �9,10�. However,
a phase-only description is insufficient to describe the ampli-
tude resonance effect and we are required to consider more
general evolution equations for both the amplitude and
phase. Other amplitude-dependent effects in coupled oscilla-
tors include oscillator death and localization. Oscillator death
describes the situation when the coupling constants can be
tuned such that oscillatory solutions become unstable and the
system returns to steady-state behavior; this has been inves-
tigated for systems with instantaneous coupling �9,11,12� as
well as for delayed coupling �13–15�. Localized solutions
refer to when the amplitudes of the different oscillators have
different orders of magnitude and has been studied in
�16,17�.

In the next section we will consider the analysis of Eqs.
�1� without delay coupling. We will show that including the
effect of nonlinear dissipation removes the singularity that
appeared in the leading-order bifurcation equation. In Sec. III
we will use numerical continuation to explore the system
with delayed coupling and track how the bifurcation diagram
deforms as a function of the parameters. In particular, we
will track disconnect bifurcation curves that result from im-
perfect bifurcations of the curve that originates at the Hopf
bifurcation. We will finish with a brief discussion in Sec. IV.

II. REMOVAL OF RESONANCE SINGULARITY

We will first review the results from �1�, where we used
the method of multiple scales �18� to study the properties of
the small-amplitude oscillatory solutions to Eqs. �1� that
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FIG. 1. �Color online� �a� Amplitude of x2 as a function of �d2�:
numerical ��� �AUTO �22�� analytical from Eq. �4� �solid line�. Pa-
rameter values are �=0.001, a1=a2=2, b=1, and d1=3 so that
d2H=−4 /3 and d2S=−3. In the inset �1� we show the pulsating yj

near the peak of the resonance �y1, dashed line; y2 solid line�, while
in inset �a2�, yj is small amplitude and nearly harmonic. �b� Same as
�a� except the solid curve results from numerical simulation of
Eq. �11�.
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FIG. 2. �Color online� Numerical �23� �a� bifurcation diagram
for the amplitude of x2 and �b� the magnitude of the Floquet mul-
tipliers for Eqs. �1� with delay coupling. In �a� the dotted portion of
the curve for d1=2.4 represents unstable solutions. Parameter val-
ues are �=0.01, a1=a2=2, b=1, and �=�.
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emerge when �d2�� �d2H�. We derived the coupled Stuart-
Landau equations

dAj

dT
= −

1

2
ajAj −

1

6
i�Aj�2Aj −

1

2
idkAk �3�

for j=1,2 and k=2,1, and where xj ��1/2Aj�T�exp�it�+c.c.
and T=�t �“c.c.” stands for complex conjugate�. Thus, the
complex function Aj�T�=Rj�T�ei�j�T� determines the slowly
evolving amplitudes Rj�T� and the phases � j�T�. The xj and
yj are periodic if the amplitudes and phase difference ��2
−�1� are constant with respect to the slow-time T �i.e., their
derivatives with respect to T are zero�. The resulting alge-
braic equations can be solved to determine the bifurcation
equation for R2, which is given by �Eq. �17� in �1��

R2
4 = 9�a1 + a2�2

	 d2

d2H
− 1


	 d2

d2S
− 1
2 ,

d2H = −
a2

d1
, d2S = − d1. �4�

The amplitude R1 and the phase different 	 are functions of
R2 �see Eq. �18� in �1��. The denominator of Eq. �4� is zero
when d2=d2S, which indicates that the amplitude of the pe-
riodic oscillations becomes large when d2→d2S. The numeri-
cal resonance peak and the singular bifurcation result are
shown in Figs. 1�a�.

To better understand the coupling resonance, we consider
the following generic amplitude equations corresponding to
two nearly identical coupled oscillators with asymmetric
coupling:

AjT = �aj1 + ib1�Aj + �a2 + ib2�Aj�Aj�2 + �a3 + ib3�Aj�Aj�4 + ¯

+ idkf�Ak,Aj� �5�

for j=1,2 and k=2,1. The two oscillators differ only in their
linear dissipation, represented by aj1, and the asymmetric
coupling in that d2 does not, in general, equal d1.

We first consider when there is only linear damping and
linear coupling. Specifically, we assume that aj1�0 and al
=0, l=2,3 , . . ., such that the only coefficient with nonzero
real part is the linear term AjT�a1Aj. Additionally, we as-
sume that the coupling function is similar to Eq. �3�, where
f�Ak ,Aj�=Ak. In the Appendix we show that in this case there
will always be a singular point such that when d2→d2S the
amplitude becomes unbounded; specifically, in Eq. �A9� we
see that the amplitude of periodic solutions will be singular
when d2=d2S. Notice that in Eq. �A4� when d2=d2S, then
R1=R2. Then in Eq. �A3� for 	T the amplitude dependence of
the slow phase is removed except for the coupling terms.
Thus, in general, the singularity, and hence the resonance,
results from matching the amplitudes such that the nonlinear
amplitude terms vanish from the phase equation, which cor-
responds to frequency matching.

To remove the singularity from the bifurcation equation
we must include the effect of the nonlinear dissipation—i.e.,
the real coefficients in Eq. �5�; it will suffice to consider

aj1=0 and a2�0 and ignore all of the nonlinear terms of
power 5 or greater. Thus, we consider

AjT = �a2 + ib2�Aj�Aj�2 + idkAk �6�

for j=1,2 and k=2,1. When we look for steady-state solu-
tions, we find that

R1
4 = 
R2

4, 
 = −
d2

d1
�7�

and

R2
4 =

d1
2
1/2�1 + 
1/2�2

b2
2�1 − 
1/2�2 + a2

2�1 + 
1/2�2 . �8�

Even when 
=1 the denominator is strictly positive for a2
�0, so there will be no singularity. If a2=0, then we would
consider the real coefficient a3 of the quintic nonlinearity,
which would remove the singularity. Thus, we see that the
singularity in the bifurcation equation that results from fre-
quency matching is removed by taking into account higher-
order nonlinear dissipation.

Unfortunately, for our specific problem, when we look for
small-amplitude O��1/2� solutions using the method of mul-
tiple scales, we find that both a2=0 and a3=0. Continuing
the analysis to even higher order in � becomes algebraically
difficult. Instead, we have taken an alternative approach to
find the relevant Stuart-Landua amplitude equations. We be-
gin by looking for O�1� amplitude solutions to Eqs. �1� for-
mulated in terms of the energy and phase �16,19�. This al-
lows us to derive the following integral constraint, which
ensures a constant value for the energy of oscillatory solu-
tions:

�
0

P

�− axj0
2 + dkxj0yk0�dt = 0, �9�

where P is the period of the oscillations. The xj0 and yj0 are
the �=0 solutions to Eqs. �1�, the latter given by

dyj0

dt
= xj0�1 + yj0�,

dxj0

dt
= − yj0. �10�

The key idea of our alternative approach is that in the limit
of small-amplitude solutions, Eq. �9� should produce the
same condition for periodic solutions as we found from Eqs.
�3� and �5�.

To evaluate the integrals in Eq. �9� we need to solve Eq.
�10�, which does not yield an exact solution. Instead, we find
approximations for xj0 and yj0 in the limit of small amplitude
by using the Poincaré-Linstedt method �strained coordinates�
�18�. Specifically, we let xj0=�xj1+O��2� and similarly for
yj0, where ��1 is a measure of the small size of xj0. We also
rescale time according to s= �1+�2�2+ ¯ �t and solve for
�2. The solutions for xj0 and yj0 are used to evaluate the
integrals in Eq. �9�. The integral on xj

2 will determine all the
real coefficients, i.e.—the dissipation—in Eq. �5�. The inte-
gral on xjyk determines the coupling term in Eq. �5�. What
remains to be determined are the imaginary coefficients in
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Eq. �5�. These correspond to the amplitude-dependent fre-
quency correction �2, which is determined by the Poincaré-
Linstedt analysis.

In sum, the coefficients aj in Eq. �5� are determined by the
integral on xj0

2 , the functional form of the coupling term is
determined from the integral on xj0yk0, and the coefficients bj
are determined by the amplitude-dependent frequency cor-
rection. The result is

AjT = −
aj

2
Aj − 	�

aj

9
+

i

6

Aj�Aj�2

−
i

2
dkAk	1 − �

1

6
�Ak�2 + �

1

9
A

j
*Ak
 �11�

for j=1,2 and k=2,1. The introduction of the parameter �
on some coefficients indicates that these terms would be gen-
erated by higher-order terms in the more systematic multiple-
scale approach. We note that the O�1� terms in Eq. �11� are
the same as those that appear in Eq. �3�. We will validate the
O��� terms in Eq. �11� by comparing the predicted ampli-
tudes to simulations of the original model.

By formulating the solvability condition based on the
leading-order nonlinear problem given by Eq. �10�, the cou-
pling term becomes nonlinear function of the amplitudes.
The steady-state conditions for the amplitudes Rj that result
from Eq. �11� are a pair of nonlinear algebraic equations
without a closed-form solution and require numerical evalu-
ation. Instead, we have chosen to simulate Eq. �11� directly.
In Fig. 1�b� we compare the numerical bifurcation diagram
of the original model, Eq. �1�, to the numerical bifurcation
diagram generated by Eq. �11� and obtain an excellent fit.
The bifurcation curves match well away from the resonance
peak and agree to within 5% at the resonance peak. We have
also confirmed that both the nonlinear dissipation and the
nonlinear coupling terms in Eq. �11� are necessary to obtain
good agreement; more specifically, eliminating the terms that
depend on Aj from the coupling reduces the quality of fit.

Finally, we note that the coupling coefficient in all the
amplitude equations that we consider is imaginary. This is
motivated by the fact that the incoherent coupling �5� con-
sidered in Eq. �1� leads to the purely imaginary coupling
coefficient in Eq. �3�. However, we note that the bifurcation
results of the Appendix and in this section are unchanged if
the coupling coefficient is strictly real and are qualitatively
unchanged but algebraically more complicated if they are
complex.

III. RESONANCE DUE TO DELAY

We now consider Eq. �1� in the presence of delay where
the coupling term is given by Eq. �2�. With delay the reso-
nance peak occurs when both coupling constants are of the
same sign. The opposite sign coupling used when the cou-
pling is instantaneous provides the necessary phase shift
such that for small-amplitude harmonic solutions it is
equivalent to a time delay of half the period �see the Appen-
dix of �2��. In �2� we used negative coupling to be consistent
with the experimental setup that we were considering. In the
present paper we will use positive coupling because the nu-

merical results are easier to display and describe, while being
qualitatively equivalent. For small-amplitude harmonic oscil-
lations, the difference in the sign of the coupling is of little
consequence because the Hopf bifurcation point and the am-
plitudes depend upon the product of the coupling constants.
However, for large-amplitude oscillations yj is pulsating, so
the coupling signal is not invariant with respect to the sign of
the coupling.

Without delay the resonance peak is singled valued; that
is, for every value of d2 there is a single value for the am-
plitude of periodic solutions. However, with delay we find
that d1 can be tuned such that the resonance peak folds to
form an interval in d2 when there is bistability, as shown in
Fig. 2; the fold is reminiscent of the resonance that occurs in
forced nonlinear oscillators �20�.

In �2� we reported that when d1 was increased further
there was a “discontinuous” change in bifurcation curve.
However, in addition to the original branch of periodic solu-
tions that emanated from the Hopf bifurcation there are other
disconnect branches of periodic solutions. By tracking the
additional disconnect solution branches we can follow the
continuous deformation of the bifurcation curves as d1 is
varied. To begin, in Fig. 3�a� we see that for d1=2.6 there is
a second branch of solutions for larger d2 that is to the right
of the folded resonance peak; it appears via a saddle-node
bifurcation at d2�45. Thus, the system is monostable just
after the Hopf bifurcation, is bistable between the two limit
points of the original bifurcation curve, becomes monostable
for d2 greater than the right-hand limit point at d2�30, and
becomes bistable again when the second branch of solutions
appears at the d2�45.

Now consider when d1=2.7 in Fig. 3�a� in which there is
no resonance peak. In this case, the bifurcation curve that
originated at the Hopf bifurcation point does not fold and
remains at O�1� amplitudes. However, there is a lower folded
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FIG. 3. �Color online� �a� Numerical bifurcation curves for d1

=2.6 and d1=2.7. Solid and dashed curves represent stable and
unstable solutions, respectively. Other parameters are the same as in
Fig. 2. �b� d1 is close to the critical value for an imperfect
bifurcation.
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branch of solutions that appears via a saddle-node bifurca-
tion when d2�11. The upper portion of the folded branch is
unstable, while the lower portion is stable.

In Fig. 3�b� we track the deformation of the bifurcation
curves as d1 is decreased from 2.7 to 2.6. As d1 decreases,
the amplitude of the original branch of solutions decreases,
while the upper part of the folded branch increases. When
d1=2.603 the two curves almost merge at d2�36. When
d1=2.602 the upper and lower bifurcation curves have
merged and then been “pinched off” such that there are now
left- and right-hand limit points and left- and right-side dis-
connected bifurcation branches. The merging and pinching
of the bifurcation curves that we have described is an ex-
ample of an imperfect or broken bifurcation �6,7�.

In Fig. 4 we track the changes in the bifurcation curves as
we vary the delay time �. In Fig. 4�a� we see that as we
increase the delay from less than �=�, the upper and lower
branches of solutions pass through an imperfect bifurcation
to form a folded resonance peak on the left and a discon-
nected branch of solutions on the right. As � is increased
further, the disconnected branch moves to the right such that
the limit point occurs for higher values of d2. In Fig. 4�b� we
focus on the bistable resonance peak and follow its deforma-
tion as � is increased further. We see that as � increases, the
interval of bistability decreases. For �=1.45� /2 the bifurca-
tion curve intersects itself in this two-dimensional projection
of the more general bifurcation curve.

In Fig. 5 we again consider the case when �=1.45. In Fig.
5�b� we show the projection of the bifurcation curve in the
(max�x1� ,max�x2�) plane and see that the bifurcation curve
does not actually intersect itself. Notice that solutions that
originate at the Hopf bifurcation point are unstable. As d2 is
increased from below the Hopf bifurcation point to above,
the system will jump from the now unstable steady state to
the small interval of stable oscillations where max�x1�

�2.25. For larger values of d2 the stable part of the branch
of solutions occurs for smaller amplitudes when max�x1�
�0.5.

When the delay is increased from �=1.45� /2 to �
=1.5� /2, an imperfect bifurcation occurs such that the reso-
nance peak “pinches off” to form an isola �6,8�—i.e., an
isolated branch of solutions—which in this case is unstable.
Thus, for the cases �=1.5� /2 and �=1.55� /2 that are shown
in Fig. 5, when d2 is increased from below to above the Hopf
bifurcation point the system will jump to periodic solutions
with amplitude max�x1��0.5.

IV. DISCUSSION

The coupling-induced resonance we describe is a generic
property of the very-well-known Stuart-Landau equations
and should be observable in any coupled-oscillator system
where the former are the relevant normal-form equations.
For systems described by the Stuart-Landau equations the
amplitude remains a dynamically evolving variable; in con-
trast, for limit-cycle oscillators, the described phase equa-
tions, the amplitude is fixed and there will not be a coupling-
resonance affect. For instantaneous coupling the only
novelties we introduce are to allow the coupling coefficients
to be individually tunable and of opposite sign. With delayed
coupling the resonance is exhibited for same-sign coupling.
In �1� we also show that the resonance can be exhibited in
systems of more than two coupled oscillators with appropri-
ate tuning of the coupling coefficients.

Observation of the resonance may require very precise
control over the system parameters because it occurs over a
relatively small interval of the coupling coefficients. For ex-
ample, in the laser experiments of �21� we could not control
the coupling strength with fine enough resolution and the
resonance was not observed. Other experimental systems of
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coupled oscillators may allow for better tuning of the cou-
pling strength and, hence, allow for the observation and po-
tential exploitation of the resonance phenomena.

Our previous analysis located the resonance peak as a
singular point in the bifurcation equation. In this paper we
show that accounting for nonlinear dissipation is sufficient to
remove the singularity from the analytical results. For our
particular example we needed to change our analytical ap-
proach to an energy-phase formulation that allowed for
larger amplitude solutions; in this way, we could derive the
required higher-order contributions to the amplitude equa-
tions.

We also show that the resonance results when the oscilla-
tor amplitudes are tuned such that the amplitude-dependent
frequency corrections of each oscillator are matched; this
observation is consistent with the typical notion of resonance
in periodically forced systems, where the forcing frequency
is matched to the natural frequency of the oscillator. We may
also think of the resonance as resulting from the signal of the
coupling term canceling with the oscillator’s self-dissipation.

In our analysis we considered nearly identical oscillators.
In general, allowing for additional small detunings of the
other oscillator coefficients merely complicates the analysis,
but the resonance effect can still be observed. We note that
linear frequency detuning in the case of instantaneous cou-
pling �b1→b1j in Eq. �5�� can shift the Hopf bifurcation
point and the singular point, and can significantly distort the
bifurcation curve; the effect is similar to changing the delay
when there is delayed coupling. We have focused on the case
when the resonance appears near the Hopf bifurcation point
and have not tried to investigate the situation when the reso-
nance might interfere with secondary bifurcations that occur
for larger coupling �1�.

APPENDIX: CORRECTIONS TO PHASE

We consider the special case of Eq. �5�, but with only
linear damping and linear coupling. In this case, we have

AjT = aj1Aj + ib2Aj�Aj�2 + ib3Aj�Aj�4 + ¯ + idkAk,

�A1�

which decomposes to amplitude and phase equations as

RjT = aj1Rj 
 dkRk sin 	 , �A2�

	T = �
l=2

bl�R2
2�l−1� − R1

2�l−1�� + 	d1
R1

R2
− d2

R2

R1

cos 	

�A3�

�take the ��� if j=1, k=2 and the ��� if j=2, k=1�. Periodic
oscillatory solutions to the original oscillator model corre-
spond to steady-state solutions of the amplitude equations,

where the time derivative equals zero. We find that

R1
2 = −

a21d2

a11d1
R2

2 �A4�

and 	=	�R2� is a fixed function of the amplitude. Then us-
ing cos2 	+sin2 	=1 we have

−
��l=2blS2

l−1�1 − 
l−1��2

4d1d2
−

a11a21

d1d2
= 1, �A5�

where Sj =Rj
2 and 
=−

a21d2

a11d1
. The last result can be simplified

to


�
l=2

blS2
l−1�1 − 
l−1��2

= − 4�a11a21 + d1d2� . �A6�

So that the right-hand side is positive, we require that d2
�−�a11a21� /d1, which corresponds to increasing �d2� beyond
the Hopf bifurcation point.

The following two properties allow us to simplify Eq.
�A6�:

S2
l−1 = S2S2

l−2, �A7�

1 − 
l−1 = �1 − 
��1 + 
 + 
2 + ¯ + 
l−2� = �1 − 
��
m=0

l−2


m.

�A8�

After some additional algebra Eq. �A6� becomes

S2
2
�

l=0
	bl+2S2

l �
m=0

l


m
�2

=
− 4�a11a21 + d1d2�

�1 − 
�2 . �A9�

Equation �A9� is the bifurcation equation that describes the
amplitude S2=R2

2 as a function of the parameters.
For the case that b2�0 but bj =0, j=3,4 , . . ., we recover

the previous bifurcation equation

S2
2 =

− 4�a11a21 + d1d2�
b2

2�1 − 
�2 . �A10�

In general, we see that the bifurcation equation will always
have the term

1 − 
 = 1 +
a21d2

a11d1
, �A11�

in the denominator for S2, which is singular when d2
=−�a11d1� /a21.
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